Real-Time Tracking of Origami with Physics Simulator Considering Fold Lines

Hiroto ARASAKI and Akio NAMIKI (Chiba University) https://www.em.eng.chiba-u.jp/~namiki/

Robotic Origami Folding

- Difference from cloth or rope:

 - Bending elasticity
 Plastic Deformation (Fold line)
- Succeeded in twice valley triangular folds

- Paper Shape Recognition
 - Difficulty with complex

Paper-Shape Tracking System

- **RGB-D Sensor**
 - Intel RealSense D435 (overhead, rear)
 - Intel RealSense D405 (left, right, below)
- **Real-time Digital Twin Simulator**

System Overview

- **Paper Detection**
 - mask from RGB image
 - obtain 3D Point Cloud Data
- Simulation
 - Predict paper's 3D deformation
- **Point Cloud Registration**
 - Match the "model PCD" to "observed PCD"
 - Coherent Point Drift (CPD)

Processing Pipeline

Simulator

Realtime Simulation

- Substep Extended Position Based Dynamics (XPBD)

Physical Model

- Mass-link array model (spring, damper)

- Elastoplastic spring $(\alpha, \Delta l_p)$

Plasticity Localization

Trade-off in plasticity

- Deformability - Robustness

Detect fold line as cluster boundaries

- Mahalanobis k-means clustering
- Cluster constraint: Planer distributions

Plasticity applied only fold lines

- Link has different cluster endpoints
 - = Fold line. Apply plasticity
- Link has **same** cluster endpoints
 - = Plane. Reset plasticity

Node

High plasticity

Low plasticity

- Node Position Data (3D + 2D)parametric $\mathbf{x} = (x, y, z, \mathbf{u}, \mathbf{v})$
- Mahalanobis Distance

$$d_M(\mathbf{x}, \boldsymbol{\mu}) = \sqrt{(\mathbf{x} - \boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma} (\mathbf{x} - \boldsymbol{\mu})}$$

Principal Component Analysis

$$\Sigma = \mathbf{W}^{\mathrm{T}} \mathbf{\Lambda} \mathbf{W}$$

 $\Lambda = \text{diag}(\lambda_1, \lambda_2, \lambda_3, \lambda_4, \lambda_5)$

→ replace with small constant

Experiment

ArUco Tracking

CPD Tracking

Results & Contributions

- Success in square-base folding (more complex than valley triangular folds)

Limitations

- Model tunneling has occurred
- Heuristic parameter tuning
- Low speed (approximately 5 Hz)

Future Work

- Address model tunneling problem
- Optimizing system parameters
- Accelerating processing