Learning Equivariant Neural-Augmented Object Dynamics From Few Cornel Interactions

Sergio Orozco^{1,2}, Tushar Kusnur¹, Brandon B. May¹, George Konidaris², Laura Herlant¹

¹Robotics and AI Institute ²Brown University

-Motivation: Learning Object Dynamics Is Sample Inefficient-

- Learning accurate forward dynamics models for tabletop manipulation require thousands of interactions
- We should exploit symmetries in object dynamics using Equivariance
- Physics simulators provide physical feasibility across long horizons

EGNN+G

SMS(NO)

Method: PIEGraph For Robotic Planning

- PIEGraph is a neural-augmented simulator trained on human-object interaction data.
- PIEGraph guides spring mass systems towards equivariant model outputs
- We optimize for action sequences using MPC with 1,000 concurrent simulation trajectories

Results

0.003 0.004

CD vs. time, success rate vs. goal threshold

1 2 3 4 5 6 7 8 9 10 11 12 13

SMS(O)

| H | TBlock | 1 | (0.0073, **0.0029**) | 10 | (0.0299, **0.013**) | 100 | (0.0868, **0.0682**)

TABLE I: **Simulated Dynamics Results.** We present average particle distance losses for Propnet and our model respectively — (Propnet, Ours) — for a 2D Tblock for horizon lengths (**H**) 1, 10, and 100. These results are averaged across a single episode of 500 timesteps.

$\mathbf{H} $	TBlock	Stiff Rope	Bendy Rope	Sloth	Cloth
1	(4.1, 1.3)	(5.1, 2.5)	(5.5, 2.4)	(10.9, 6.4)	(7.2, 2.6)
2	(9.9, 2.8)	(11.7, 6.0)	(5.5, 2.4) (13.3, 5.5) (31.9, 13.8)	(26.3, 14.5)	(15.7, 5.4)
1	(23 2 5 7)	(27 1 12 8)	(21 0 12 8)	(63 0 33 7)	(3/6 157

TABLE II: **Real World Dynamics Results.** We present a custom chamfer distance and shape loss metric (**CD+S**) for our neural model without and with guidance respectively — (Ours(NG), Ours) — for tblock, stiff rope, bendy rope, sloth, and cloth for horizon lengths (**H**) 1, 2, 4.

- We outperform explicit simulation with system identification
- We outperform GNNs with 30x less data
- PIEGraph learn deformable object dynamics with only ~1 minute of data
- Ablations show a significant performance increase with a physics informed prior